Kafka是一种分布式的基于发布/订阅的消息系统,它的高吞吐量、灵活的offset是其它消息系统所没有的。

Kafka发送消息主要有三种方式:

1.发送并忘记 2.同步发送 3.异步发送+回调函数

 

下面以单节点的方式分别用三种方法发送1w条消息测试:

方式一:发送并忘记(不关心消息是否正常到达,对返回结果不做任何判断处理)

发送并忘记的方式本质上也是一种异步的方式,只是它不会获取消息发送的返回结果,这种方式的吞吐量是最高的,但是无法保证消息的可靠性:

复制代码
 1 import pickle
 2 import time
 3 from kafka import KafkaProducer
 4 
 5 producer = KafkaProducer(bootstrap_servers=['192.168.33.11:9092'],
 6                          key_serializer=lambda k: pickle.dumps(k),
 7                          value_serializer=lambda v: pickle.dumps(v))
 8 
 9 start_time = time.time()
10 for i in range(0, 10000):
11     print('------{}---------'.format(i))
12     future = producer.send('test_topic', key='num', value=i, partition=0)
13 
14 # 将缓冲区的全部消息push到broker当中
15 producer.flush()
16 producer.close()
17 
18 end_time = time.time()
19 time_counts = end_time - start_time
20 print(time_counts)
复制代码

 测试结果:1.88s

 

方式二:同步发送(通过get方法等待Kafka的响应,判断消息是否发送成功)

以同步的方式发送消息时,一条一条的发送,对每条消息返回的结果判断, 可以明确地知道每条消息的发送情况,但是由于同步的方式会阻塞,只有当消息通过get返回future对象时,才会继续下一条消息的发送:

 

复制代码
 1 import pickle
 2 import time
 3 from kafka import KafkaProducer
 4 from kafka.errors import kafka_errors
 5 
 6 producer = KafkaProducer(
 7     bootstrap_servers=['192.168.33.11:9092'],
 8     key_serializer=lambda k: pickle.dumps(k),
 9     value_serializer=lambda v: pickle.dumps(v)
10 )
11 
12 start_time = time.time()
13 for i in range(0, 10000):
14     print('------{}---------'.format(i))
15     future = producer.send(topic="test_topic", key="num", value=i)
16     # 同步阻塞,通过调用get()方法进而保证一定程序是有序的.
17     try:
18         record_metadata = future.get(timeout=10)
19         # print(record_metadata.topic)
20         # print(record_metadata.partition)
21         # print(record_metadata.offset)
22     except kafka_errors as e:
23         print(str(e))
24 
25 end_time = time.time()
26 time_counts = end_time - start_time
27 print(time_counts)
复制代码

 

测试结果:16s

 

方式三:异步发送+回调函数(消息以异步的方式发送,通过回调函数返回消息发送成功/失败)

在调用send方法发送消息的同时,指定一个回调函数,服务器在返回响应时会调用该回调函数,通过回调函数能够对异常情况进行处理,当调用了回调函数时,只有回调函数执行完毕生产者才会结束,否则一直会阻塞:

复制代码
 1 import pickle
 2 import time
 3 from kafka import KafkaProducer
 4 
 5 producer = KafkaProducer(
 6     bootstrap_servers=['192.168.33.11:9092'],
 7     key_serializer=lambda k: pickle.dumps(k),
 8     value_serializer=lambda v: pickle.dumps(v)
 9 )
10 
11 
12 def on_send_success(*args, **kwargs):
13     """
14     发送成功的回调函数
15     :param args:
16     :param kwargs:
17     :return:
18     """
19     return args
20 
21 
22 def on_send_error(*args, **kwargs):
23     """
24     发送失败的回调函数
25     :param args:
26     :param kwargs:
27     :return:
28     """
29 
30     return args
31 
32 
33 start_time = time.time()
34 for i in range(0, 10000):
35     print('------{}---------'.format(i))
36     # 如果成功,传进record_metadata,如果失败,传进Exception.
37     producer.send(
38         topic="test_topic", key="num", value=i
39     ).add_callback(on_send_success).add_errback(on_send_error)
40 
41 producer.flush()
42 producer.close()
43 
44 end_time = time.time()
45 time_counts = end_time - start_time
46 print(time_counts)
复制代码

测试结果:2.15s

 

三种方式虽然在时间上有所差别,但并不是说时间越快的越好,具体要看业务的应用场景:

场景1:如果业务要求消息必须是按顺序发送的,那么可以使用同步的方式,并且只能在一个partation上,结合参数设置retries的值让发送失败时重试,设置max_in_flight_requests_per_connection=1,可以控制生产者在收到服务器晌应之前只能发送1个消息,从而控制消息顺序发送;

场景2:如果业务只关心消息的吞吐量,容许少量消息发送失败,也不关注消息的发送顺序,那么可以使用发送并忘记的方式,并配合参数acks=0,这样生产者不需要等待服务器的响应,以网络能支持的最大速度发送消息;

场景3:如果业务需要知道消息发送是否成功,并且对消息的顺序不关心,那么可以用异步+回调的方式来发送消息,配合参数retries=0,并将发送失败的消息记录到日志文件中。

来源:HarvardFly